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ABSTRACT

The Einstein field equation is the second order partial differential equa-
tion. It relates spacetime curvature to matter. In general, the exact so-
lutions cannot be obtained because the equation is so complicated. One
of the popular assumptions to reduce the complexity of the equation is
that matter is a static, spherically symmetric, perfect fluid. In this way,
the Einstein field equation is transformed to a second order differential
equation with variable coefficients. In this paper, we are interested in
solutions about regular singular points. Therefore, the method of Frobe-
nius can be applied. Moreover, the reduced Einstein equation is of the
Riccati form. With the property of the Riccati equation, we can find the
general solutions if the particular solutions are specified.

Keywords: Differential equation with variable coefficients, Einstein field
equation, method of Frobenius, perfect fluid, Riccati equa-
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1. Introduction

The Einstein field equations describe how spacetime curves by the presence
of matter and energy. They are the central equations in the general theory of
relativity. Mathematically, the Einstein field equations are the second order
partial differential equations. In fact, they are a set of 16 equations in our (3 +
1)-dimensional real world. Without any assumption or symmetry, the Einstein
field equations cannot exactly be solved. To look for an exact solution, some
assumptions have to be imposed to reduce the complexity of the Einstein field
equations. An example of such assumptions is to model matter as a static and
spherically symmetric perfect fluid. This assumption leads to the first two ex-
act solutions to the Einstein field equations, which are known as the (exterior)
Schwarzschild solution and the interior Schwarzschild solution
. After this discovery, a static perfect fluid sphere became more pop-
ular, after which many exact solutions were found Bondi (1947)), Boonserm
(2006)), Boonserm and Visser| (2008), [Boonserm and Weinfurtner| (2005)), Buch-
idahl (1959), Delgaty and Lake| (1998), Herrera, (2008), Kramer| (1980), [Lake;
(2003), Martin and Visser| (2004), Rahman and Visser, (2002).

Exact solutions can be obtained in many different ways. Some tried to
solve the Einstein field equations directly with the aid of some assumptions.
Some used special techniques to obtain exact solutions without solving the Ein-
stein field equations Boonserm and Visser| (2016]), Boonserm and Thairatanal,
|Jongjittanon and Ngampitipan| (2016), Thairatana (2013). Some generated
new solutions from previously known solutions using the property of the Ric-
cati equation [Boonserm and Weinfurtner| (2007)), |[Jongjittanon| (2015)), Kauser
[and Tslam| [Kinreewong] (2015)). Some applied the Frobenius method [Piaggio
(2008), Riley and Bence| (2006) to solve the Klein-Gordon equation on a curved
background given by the Einstein field equation |Konoplya and Zhidenko| (2011))
and the generalized Einstein field equation in higher derivative gravity theo-

ries (2016)). In this paper, we will use the Frobenius method and the
properties of the Riccati equation to obtain exact solutions.

This paper is organized as follows. The assumption of perfect fluid spheres
is imposed in section [2] The solutions to the Einstein field equations obtained
by the Frobenius method and the properties of the Riccati equation are given
in sections [3] and [4] respectively. A comparison between the two methods is
made in section [§] Finally, a concluding remark is provided in section [f]

62 Malaysian Journal of Mathematical Sciences



The Two Techniques for Generating Perfect Fluid Sphere

2. Perfect fluid spheres

The curvature of spacetime is described by the Einstein equations
GY = 8rGTF, (1)

where G is the Einstein tensor and T}/ is the energya-momentum tensor, which
takes the form

T# = diag(_papr7ptvpt)' (2)

We are interested in perfect fluid as the source of the energyd-momentum ten-
sor. One of the properties of being a perfect fluid is its pressures in all directions
are the same. That is p, = p; or, in terms of the components of the energya-
momentum tensor,

T! =12 (3)
From , the above condition leads to

Gl =G2. (4)
The metric of the spacetime is given by

d 2

ds® = C2(r)dt® + —— + r2(d6* + sin® 0do?). (5)
B(r)
Applying this metric to , we obtain

2r?B(r)¢" (r) + [r?B'(r) — 2rB(r)]¢'(r) + [rB'(r) — 2B(r) + 2]¢(r) = 0. (6)
This is a second order linear ordinary differential equation. Moreover, this

equation must be satisfied when the condition of perfect fluid spheres is im-
posed.

3. Frobenius Method

To apply the Frobenius method, equation @ is rewritten as

rB'(r) — 2B(r) rB'(r) — 2B(r) + 2

e+ 20, o EO B0 200y 0. )
Dividing the above equation by 7?2 gives
() + rB'(r) — 2B(r) )+ rB'(r) — 2B(r) + 2((7") _o. (8)

2rB(r) 2r2B(r)
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We see that the coefficients of ¢'(r) and ¢((r) are not analytic at r = 0.
Thus, the Frobenius method can be applied to find a power series of the form

= Z Akrk+n, (9)
k=0
where Ay # 0. Differentiating the above solution gives
Z k4 n)Aprktn-t (10)
k=0
and -
=> (k+n—1)(k+n)Apr*tr2, (11)
k=0

Moreover, expanding the coefficients of r¢’(r) and ((r) in in a power
series gives

- (2>B_(r2)B —or sz -
and
rB'(r)—2B(r)+2 1-B(0) <=
2B =By T ; air (13)

Substituting (9) - into (7)), we obtain

1_B(O) n
3 n— n) — n 717B(0) phtn
I B L

()

The indicial equation is given by

i k+n) AprFt
k=

+ (i qiri> <§: AkaJ'_n) =0. (14)
=1 k=0
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The roots of the above indicial equation is given by

2+,/4—-4]1-B B _ -
= \/ [ (0))/ (O):li 1_17B(0):1i m
2 B(0) B(0)
(16)
We choose B(r) = —1/2—br?, where b is constant. Substituting in equations
and , we obtain
rB'(r) — 2B(r) B 1 oo o
2B(r) 14202 ; —2b) (17)
and
rB'(r) — 2B(r) + 2 3 50 -,
- =—9- —2b)" ", 1
2B(r) 1+ 2br2 3 32:( )or (18)

From the chosen B(r), we obtain B(0) = —1/2. Equation becomes

n=-1,3. (19)

The two roots are separated by an integer. Consider the smaller root n =
—1. Substituting in gives

i [(k—2)(k—1) = (k—1) = 3] AprF 1 —

k=1

S o - pgron] )

Rearranging the above equation, we obtain

o0

>kl —4) Akt — lz —2b)? 21] [Z (k +2)Aprk— 1] =0. (20)
k=1 i=1 k=0
Rearranging the above equation, we obtain

—3A; + (—4Ay + 4bAg) r + (—3A3 + 6bA;) 1 +
(—8b*Ag + 8bAs) r® + (5A5 — 1267 Ay + 10bA3) r* +
(1246 + 16b° Ag — 160> Ay 4+ 12044) r° + ... =0. (21)
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The coefficients of any power of » must be zero. We find that

A1 =A3=A5=...=0
and
Ay = DA
Ag = —bA,.

Substituting in (9)), we obtain

¢(r)

A
70 + bAgr 4+ Ayr® — bAS + ...

Ap (i+br>+A4r3(1—br2+...),

(23)

(24)

where Ay and A4 are arbitrary constants. This is the general solution to equa-

tion .

4. Riccati Equation

To transform equation into the Riccati equation, we start by defining a

new function

¢'(r)
h(r) = .
"=
Its first derivative is given by
/ _ CH(T) _ 12
R(r)= RO h*(r).
Thus,
¢"(r)

=1 (r) + h%(r).

¢(r)

Substituting and into , we get

rB'(r) — 2B(r) rB'(r) — 2B(r) + 2

/ 2 —
Pr) + R () + 2rB(r) hlr) + 2r2B(r) =0
Rearranging the above equation gives
/ _ / _
B (r) = _rB'(r)—2B(r)+2 rB'(r) —2B(r) B2,

2r2B(r) 2rB(r) hr)
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From the chosen B(r), the above equation becomes

3 1
W (r) =
(r) 72 4+ 2brd + 7+ 2br3

h(r) — h2(7").

This is the Riccati equation of which the general form is
A'(r) = qo(r) + a1 (r)A(r) + gz (r) A*(r),

where ¢o(r) # 0 and ¢2(r) # 0. Comparing with , we obtain

3 1

D) = T+ 2br

_° -1
r2 + 2br e 2 =

qo(r) =

Let ho(r) satisfy (30). Then,

E L ho(r) — B3(r).

% =
o(7) 72 4+ 2brd + 7+ 203 0

By the property of the Riccati equation, the other solution is given by

1
h(r) = ho(r) + POk

where z(r) satisfies

1

/ J— _——_— =

The solution is given by
1
- - J P(r)dr
z(r) = NERGIE /e dr,
where )
P(T) = — |:7"—i—2b7‘3 + 2h0(7"):| .

Thus,

1+ 2br? f2h0(r)dr/ / o=/ 2ho(r)dr
A=\ oz 1+2br2 ar-

From , we obtain

2br2
— *f2h0 7f2h0(r)dr
M) = ho(r) + 1\ T 57,2 l / Vi 2br2 dr ]
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From , ¢(r) is given by
¢(r) = cel MIdr, (40)

where ¢ is an arbitrary constant. This is the other solution to equation .
After knowing ho(r), we can know the explicit form of (40).

5. Comparing the Two Methods

From section [3] we can see that the general solution can be obtained using
the Frobenius method. However, the method of Frobenius can be applied to a
second order linear ordinary differential equation with some specific form.

On the other hand, the method of Riccati in section [4 can be applied to
a first order nonlinear ordinary differential equation with any form. However,
only knowing one solution, we can find the other solution. In fact, any second
order linear ordinary differential equation can be transformed into the Riccati
equation and vice versa. A single known solution to the Riccati equation can
therefore be obtained through many methods for a second order linear ordinary
differential equation including the Frobenius method.

6. Conclusion

The Einstein field equation is a second order nonlinear partial differential
equation. When imposing the condition of perfect fluid spheres, the Einstein
field equation can be transformed into a second order linear ordinary differ-
ential equation. After rearranging this equation, we can obtain the general
solution by the method of Frobenius. Moreover, this second order linear ordi-
nary differential equation can be transformed to the Riccati equation. After
knowing one solution, we can obtain the other solution.

It is not obvious to conclude which of the two methods is more preferable.

Sometimes, it is necessary to combine the two methods to obtain the general
solution to a second order linear ordinary differential equation.
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